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ABSTRACT

A comparison between tracking in spherical coordinates using coupled range
and angle filters and tracking with debiased consistent converted measurements
in 3D Cartesian coordinates is presented. The sensor is an airborne pulse
Doppler radar (APDR) with typical measurements being range, range-rate,
azimuth and elevation. The report investigates the tracking accuracy (posi-
tion, range-rate and vertical/horizontal heading) achievable in the Medium and
High PRF mode of an APDR, for both non-manoeuvring and manoeuvring tar-
gets. The manoeuvre handling logic is based on the interactive multiple model
(IMM) approach.
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On the Choice of the Coordinate System and Tracking
Filter for the Track-while-scan Mode of an Airborne Pulse
Doppler Radar

EXECUTIVE SUMMARY

This report is part of a study into the performance of the Track-While-Scan (TWS)
mode of an airborne pulse Doppler radar, and as such represents a contribution to the
Australian Hornet Upgrade (HUG) programme.

The subject of the report is the choice of the coordinate system and the tracking filter
for the TWS algorithm. The evaluation of various filter options is based on the tracking
accuracy (quality) which is an important performance measure from the standpoint of
tactical weapons launch. Poor track quality reduces the probability of a kill at a given
range. In the report we consider two common coordinate systems for tracking: spherical
and Cartesian. After introducing two types of tracking filters (one for spherical and the
other for Cartesian coordinates) we incorporate the interactive multiple model (IMM) logic
into both of them in order to be able to track the manoeuvring targets.

Extensive computer simulations have been performed to test the tracking quality in
terms of the positional, vertical/horizontal heading and the range-rate errors. The results
can be summarised as follows:

® The Cartesian tracker is more accurate during the non-manoeuvring segments of the
target trajectory;

* The spherical tracker is more accurate during the manoeuvring segments;

¢ Range-rate measurements increase the tracking acc{lracy only in the high pulse rep-
etition frequency mode;

¢ The Cartesian tracking filter is slightly more computationally intensive than the
spherical filter.

Overall the spherical coordinate system seems to be a reasonable choice for a tracking
filter in an airborne pulse Doppler radar, being fairly robust to manoeuvres and simple to
implement. The design of a tracking filter in Cartesian coordinates requires more attention
to the choice of the dynamic models in IMM logic; its main advantage is better accuracy
for non-manoeuvring segments of a target trajectory.
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1 Introduction

Track accuracy is one of the most important performance measures of a tracking system
from the standpoint of tactical weapons launch in an air-to-air engagement. Excessive
track errors (in target position or heading for example) reduce the “probability of kill”
by semi-autonomous weapons (such as AMRAAM). This is due to the requirement for a
regular update of target position/velocity through the entire flight of the missile up to the
point at which the seeker head goes active. In order to support the missile and at the
same time maintain the pilot’s situational awareness, the track-while-scan (TWS) mode
of the airborne pulse Doppler radar (APDR) is used. If there is a demand to keep the
“probability of kill” at a given level, in the presence of excessive track errors the limit of
the engagement launch of the missile has to be reduced.

Track accuracy in general depends on the quality of measurements (their accuracy and
update rate) and the design of the tracking filter. A radar signal processor unit is respon-
sible for the quality of measurements, while the designer of a tracking system selects the
tracking coordinate system, filter state variables and the tracking filter algorithm. In this
report we assume that the sensor is an airborne pulse Doppler radar with measurements
which include target range p,,, range-rate p;,, azimuth 8, and elevation e,,.

As for the choice of the tracking filter, two common coordinate systems have been
used: spherical and Cartesian [2, Sec. 3.7]. The advantage of Cartesian coordinates is
that the state equation is linear (linear target dynamic model) but its drawback is that
the corresponding measurement equation is non-linear. The non-linearity of measurements
can be handled either by the use of the extended Kalman filter (EKF) or by converting the
measurements to Cartesian coordinates prior to filtering. This second approach, if carried
out properly (conversion is debiased and consistent), is exact and therefore preferred [9],
[12], [13]. Disadvantages of Cartesian coordinates are: (1) measurements are coupled
and as a consequence, the calculations, such as matrix inversions, are computationally
intensive; (2) range measurements must be available (which in some situations, such as in
the presence of electronic countermeasures, may not be the case) [3, p.59].

If spherical coordinates are selected, the state equation of a constant velocity target is
non-linear while the measurement equation is linear. The consequence of a non-linear state
equation is that even a constant velocity target produces accelerations in angle (so-called
pseudo-accelerations), and therefore higher-order derivatives are required in the system
model (see for more details [6, Sec. 1.5]). To alleviate this problem, a suboptimal tracking
filter in spherical coordinates has been developed [3, Sec. 3.5]. It consists of a separate
range/range-rate filter and three angle filters. Being simple and reliable, the tracking filter
in spherical coordinates has been utilised in a number of operational tracking systems [6].

It is generally accepted that tracking in Cartesian coordinates is more accurate but
more computationally intensive [7]. For distant targets, tracking in spherical coordinates
may be adequate, since the pseudo-acceleration is small (6]. Following the theory pre-
sented in [9] and [12], this paper develops a tracking filter based on 3D (range, azimuth,
elevation) debiased consistent converted measurements and with incorporated range-rate
measurements. The tracking accuracy (position, horizontal/vertical heading, range-rate)
of this filter is then compared to the accuracy of the tracking filter in spherical coordinates
(described in [3, Sec. 3.5]) as well as to the Cartesian filter which does not use range-rate
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measurements. To enable tracking of the manoeuvring targets, the interactive multiple
model (IMM) logic [1, p.461] has been incorporated into both spherical and Cartesian
tracking filters. The report is organised as follows. Section 2 presents the tracking fil-
. ters in spherical and Cartesian coordinates, section 3 details the IMM extensions of the
filters. Section 4 describes the comparison methodology and simulation results. Section 5
is devoted to conclusions.

2 Tracking Filters

The dynamic motion equation for both spherical and Cartesian coordinates is given
by:

Sk+1 = Fgsi + vi + 8k (1)

where s is the state vector, F is the transition matrix, v is process noise and g is the
own-ship motion compensation vector. Index k is a discrete time index.

2.1 Spherical Coordinates

For tracking in spherical coordinates a processing scheme described in [3, Sec. 3.5]
has been implemented. This scheme consists of four Kalman filters (KFs) running in
parallel: one range/range-rate KF and three direction cosine KFs (for north, east and
down directions).

The various components of the state equation 1 for the range/range-rate filter are
as follows. The state vector is sg = [R R R]' where R is the range. The transition matrix
is:

22
1420 7 z
272
Fr=| @27 1+%- T(1-L)
0 0 e~ T/™r

where 7g is the manoeuvre time constant; T is the sampling interval; w, is the angular
rate perpendicular to the line-of-sight vector to the target (its estimate comes from the
direction cosine filters). The own-ship compensation vector expresses the contribution due
to own-ship acceleration aq in the radial direction, i.e.

2

T
B8R = ["7“0& — Taor 0]’

The covariance matrix of process noise v in (1) is given by eqn. (2.17) of [3].

The components of the state equation 1 for a direction cosine filter (one of the three)
are as follows. The state vector is syyz, = [\ v arygp, Where Ayep is a direction
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cosine defined as:

AN = cose cosf = RTN (north direction)
Ag = cose sinf = % (east direction)
Ap = -—sine= _RD" (down direction)

with Ry (Rg, Rp) being the component of target position in north (east, down) direction.
The second and third states in the state vector of the north direction cosine filter are
defined as: vy = Ry, and ary = Ry + aon where agy is own-ship acceleration in the
north direction. The transition matrix for (all three) direction cosine filters is given by:

. _ . ,
-fo-f) R0 R

F) = 0 1 T(1 - 55) (2)
0 0 e~T/mm

where 7, is the manoeuvre time constant. The range R and range-rate R in (2) are
obtained from the range/range-rate filter. The own-ship vector for a north direction cosine
state equation is given by:

!

T2
_Gont ~ —aonT 0

E\v = 1T 9R

The covariance of process noise v in direction-cosine state equations is given by eqn. (2.17)
of [3] with the exception that the elements of the first (direction cosine) state are modified
as follows: ¢}, = q11/R?, ¢} = q12/R and ¢}3 = q13/R.

In summary, the four filters for tracking in spherical coordinates are coupled in the
following sense: (i) the estimated range and range-rate from the range/range-rate KF are
used in prediction of the direction cosine KFs; (ii) the estimated angular rate wp calculated
from the three direction cosine KFs is used for prediction in the range/range-rate KF. An
approximate calculation of w, is as follows [3, Sec. 3.5]:

w2 _ (UN)‘E and 'UEAN)Z + 'U2D

P R2
Note that the described processing scheme for tracking in spherical coordinates (referred
to as Spherical further in the text) is based on linear state equations. As such it has been
derived from a number of reasonable approximations (for airborne surveillance) and hence
it has found application in a number of operational systems [6, Sec. 1.5].

2.2 Cartesian Coordinates

For tracking in Cartesian coordinates, debiased consistent converted measurements of
range, azimuth and elevation were used. The range-rate measurements are also incorpo-
rated via the second order KF [8]. The z, y and z direction are used (by convention)
to correspond to east, north and down direction. The following steps were used in the
development of the tracking filter in Cartesian coordinates.
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(I) Conversion of radar measurements p,,, 6, and ¢,,:

Pm - €080, - COS €

m
Y, = Pm - Sinbp, - cosem
2, = —pm-siney, (3)

(IT) Debiasing of measurements. Assuming that measurements of range, azimuth
and elevation are zero mean Gaussian with diagonal covariance matrix with elements
along the diagonal being 02, 0% and o2, the debiasing is done as follows ! [12]:

Tm = Tpl-— (e7% e % — 7% /2 6_03/2)]
Um = Y[l = (€70 €77 — €72 7]
= 2l (677 — e 7)) (4)

(III) Covariance matrix of converted measurements Z,,, ym and zp,:
RzT Rgil/ RzZ
a a
R.= | R’ RYY R¥Y (5)
R%* Rgz R#**
a a
where the expressions for elements of R, are given in [12].

(IVa) State equation (constant velocity motion). The state vector in eqn. (1) is
given by sy = [Tk Tk Yk Uk 2k 2] . The transition matrix is

1 T0O0O0O
010000
p_|0 01T 00
0007100
0000 1T
[0 0000 1]

and the covariance matrix of vy is taken from the Singer model:

gui @12 0 O 0 O
qiz @22 0 0 0 O
2021 0 0 g q2 0 O
Tm 0 0 q2 g2 0 O
0 0 0 0 gu q
0 0 0 0 g2 ¢

Q:

where oy, is the manoeuvre standard deviation, 7,, is the manoeuvre time constant
and q11, q12 and goo are given by eqn. (2.17) in [3]. The ownship compensation
vector in (1) in this case is:

g =—[00T?/2 0T a0, T?/2 a0, T @0, T?/2 ao,T]

where ao, (resp. aoy, Go,) represents the own-ship acceleration in the z (resp. y,z)
direction.

! Another scheme for unbiased spherical-to-Cartesian conversion of measurements has been reported in
[13].
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(IVb) State equation (constant acceleration motion). The state vector in eqn.
(1) is given by sy, =[xk, Tk Tk Yk Uk Uk 2k 2k 2)'. The transition matrix is
f 00
F=10f O
0 0 f

where
Tm2(=1+ % + e T/mm)

1 T
f=]0 1 Tm(1 — e~ T/™m)
0 0 e~ T/mm

and O is a 3x3 zero matrix. The covariance matrix of v is again from the Singer

model:
00
2 2 q
Q=="10 q 0
™ g 0 q
where

q11 Q12 q13
q=| q12 ¢22 g3
q13 423 Q33

and qu1, q12, q13, G22, g23 and ¢33 are given by eqn. (2.17) in [3]. The ownship
compensation vector in (1) in this case is:

g = —[a0:T?/2 aoxT 0 a0, T?/2 a0, T 0 a0, T?/2 ao,T 0]

(V) Measurement equation. In addition to the three positional measurements, the
range-rate, pn, is incorporated into the measurement equation. For this, the ap-
proach taken in {8, Sec. 4.6] is followed and is adapted to the case of the state vector
defined here. The measurement vector is given by: rkA = [Zm Ym Zm Nm] where 1,
is calculated as 7, = pm pmm. The measurement equation is then:

r; = h(sg) + wg
where

(a) for the constant velocity model, h(s) is a column vector with 4 elements: sg(1),
sk(3), sk(5) and sg(1)sk(2) + sk (3)s(4) + 5k (5)8K(6).

(b) for the constant acceleration model, h(sy) is a column vector with 4 elements:
sk(1), sk(4), sk(7) and sg(1)sk(2) + sk(4)sk(5) + sk (7)sk(8).

The covariance matrix of wy, is given by:

Ozxy

R, .

R; = yn (6)
ozz,,

Ozn Oyn Ozp Oy

where the following relationships hold approximately o7= 0703+p?03+4%02,  opp=p

o?

- 2 . - 2 .
5 cos Bl cose, oyn=p opsinflcose,  T.=p o sine.
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(VI) Second-order KF. The measurement equation is non-linear and a second-order
KF (8] is employed for tracking. Its equations are:

Serie = Fspp
Prap = FPF +Q
Peyie = h(Sppap) + drgap
Biri = HBp)PriapHBr ) + Rirn + A
Wit = PropHErep) Bri
Skifk+1 = Spqapk + Wi (Ths1 — Prgajp)
1:A’1c+1|1c+1 = f,k:+1|k - Wi1Br Wiy

where

(a) for the constant velocity model d = [0 0 0 P(1,2) + P(3,4) + P(5,6)]', and A
is a 4x4 matrix with all elements zero except for A(4,4) which can be worked
out from [8, p.278] as:
A(4,4) = P(1,1)P(2,2) + P(3,3)P(4,4) + P(5,5)P(6,6) + P%(1,2) + P%(3,4) +
P2(5,6) + 2P(1,4)P(2,3) +2P(1 6)P(2,5) +2P(1 3)P(2,4) +
2P (1,5)P(2,6) + 2P(3,6)P(4,5) + 2P (3,5)P (4, 6) (7)

Matrix H in this case is:

0 0 0
1 0 0
0 0 1

oo O

H(8) =

FOE=N=N""
=
o oo
=
ot

5(4) s(3) 3(6) s(5)

u»
w»

(b) for the constant acceleration model d = [0 0 0 P(1,2) + P(4,5) + P(7,8)]’, and
A is again a 4x4 matrix with all elements zero except for
A(4,4) = P(L,1)P(2,2) + P(4,4)P(5,5) + P(7,7)P(8,8) + P%(1,2) + P%(4,5) +
P2(7,8) +2P(1,4)P(2,5) + 2P (1,7 )?(2 )+2P(1 5)P(2,4) +
2P(1,8)P(2,7) +2P(5,8)P(4,7) + 2P (5, 7)P(4,8) (8)

Matrix H in this case is:

1 0 0 0 0 0 0 0 0

) o 0 0 1 0 0 0 0 0
HO=| 4o o9 0 0 0 0 1 0 o
5(2) 8(1) 0 3(5) 8(4) 0 s(8) §(7) 0

Cartesian filters both with and without the range-rate measurement (referred to as Carte-
stanRR and Cartesian respectively) will be considered in this report.
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3 IMM Logic for Manoeuvre Tracking

3.1 IMM Theory

The IMM approach to filtering has been shown to provide superior results over single
model KFs when manoeuvring targets are being tracked. However there is some compu-
tational expense incurred, which may prevent the use of an IMM in certain applications.
The goal here was just to examine further which coordinate system produced the best
track quality for manoeuvring target tracking, and IMM was therefore a natural choice to
use.

There are five main sections to a generic IMM algorithm, regardless of which coordinate
system is utilised. They are 1, p. 461]:

(I) Calculation of mixing probabilities. Assume there are r interacting models in
place. Here the probability that model i was in effect at the previous time step k,
given that model j is in effect at the current time step & + 1 (conditioned on all
measurements up to k) is calculated:

1 ..
pif; (k|k) = gfpij#i(k) hi=1,...,r 9)
J
where each ¢; is a normalising constant, each p; is a model probability and each Dij
is a model transition probability.
(II) Mixing.

Using state estimates (2%(k|k)) from the previous time step, the mixed states and
covariances that are matched to each mode (i.e. one of the two filter models in this
case) are calculated:

% (k|k) = Z:&’(klk Yusat (Klk) j=1,...,r (10)

P (k|k) = }_jmu(klk){l’z klk) + [&"(kIk) — 2% (kIK)] - [2*(kIk) — 3% (k|K)]'}

i=1
(11)
where j =1,...,7r.
(IIT) Mode-matched filtering.

The above estimates and covariances are then used as inputs to the two models
and have #7(k + 1|k + 1), (j = 1,...,7) as the outputs.The likelihood functions
corresponding to the two filters are then calculated as:

Aj(k +1) = N {20k + 1); 29[k + 1k; 8% (kIK)), S7[k + 1, P (k[R)]}  (12)

where NV{-} stands for the Gaussian pdf, with mean 27 and covariance S7.
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(IV) Mode probability update.
The probability of each mode being the correct one is updated:

1 .
uj(k+1)=EAj(k+1)Ej j=1,...,r (13)
where ¢ is the normalisation constant.

(V) State estimate and covariance combination.

The two estimates and covariances are finally combined, and these values are used as
the actual output of the system. They are not actually part of the IMM algorithm
recursions.

f;(k+1|/c+1)=i‘ﬁ:f(k+1|k+1)uj(k+1) (14)
j=1

Plk+1k+1) = iuj(k + D{PI(k+1]k+1)
7=1
+[#(k+ 1k +1) — 2(k+ 1]k + 1))
@k + 1)k + 1) — 2k + 1k +1)]'} (15)

A schematic description of the IMM algorithm is shown in Fig.1. Three types of IMM
systems have been developed for the investigation. Each system is based on one quiescent
and one manoeuvring model.

x| p! x2 |p?

Interaction/Mixing

01

ETjt 5 o ET

Mode |
Probs

Combine for
Output

x| P

Figure 1: The IMM algorithm (with two models)
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3.2 Implementation

Two different IMMs were implemented in Cartesian coordinates - one with two con-
stant velocity models (Imm2CV) and the other with a constant velocity and a constant
acceleration model (ImmCVCA). For the Imm2CV tracker, the approach was simple, as
each model contained a nearly identical KF; mixing/interacting the state vectors and co-
variance matrices was straightforward. We used the constant velocity model (described
in Sect. 2.2) with range-rate incorporation. The quiescent model (M1) has a quite small
process noise standard deviation (for modelling constant velocity motion) while the ma-
noeuvring model (M2) uses a fairly large amount of process noise for accommodating
acceleration and higher order derivatives of velocity.

The quiescent model of ImmCVCA is identical to the quiescent model of Imm2CV.
The constant acceleration model, with incorporated range-rate is described in Sect. 2.2.
For steps (II) and (V) of the IMM algorithm above, the following approach was adopted.
A truncated version of the constant acceleration model state vector and covariance ma-
trix was created, with acceleration elements removed. Similarly, an expanded version of
the constant velocity model’s state vector and covariance matrix was formed, by adding
zeros in place of the acceleration terms. This was so that state vectors (and associated
covariances) were always of the same length and type during the mixing and interactions
that occurred in these steps.

The approach used for the spherical tracker (ImmSpher) was slightly different. We
again chose a dual model as in Imm2CV (quiescent model with low process noise and
manoeuvring model with high process noise). However, due to the fact that we had 4
KF’s operating in parallel (for each model of a spherical filter), it was necessary to adopt
a different implementation of steps 2 and 5 of the IMM algorithm. It was decided to
combine all four state vectors (and their associated covariance matrices) into one large
vector (and one associated covariance matrix):

SiMM =[Sk Sxy Sag Sap) (16)

0 0 0 P,

This vector and its associated covariance was kept together for all IMM mixing and
interaction, but was split into component vectors for actual KF routines, as per normal.

In both spherical and Cartesian IMM systems, the Markov chain transition matrix
(used to obtain the p;; in eqn. 9) was:

_ [ 0.95 0.05 ]

0.05 0.95 (18)
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10

For initialisation of all IMM filters, a probability of 0.1 was assigned to the quiescent
model (M1) and a probability of 0.9 to the manoeuvring model (M2).

The following filter parameters were used for all trackers (both single trackers and IMM
systems): 7gr = 5 (sec), T, = 5 (sec). State vector initialisation for spherical filters was
performed using two point differencing [1, Sec. 5.5.3] in the range/range-rate filter and
three point differencing for the direction cosines. For Cartesian, two point and three point
differencing was used for constant velocity and constant acceleration models respectively.

When two point differencing was used, the initial value for the state vector covariance
matrix, Pg, was determined according to [1, eqn. (5.5.3-5)]. The appropriate formula for
the case of three point differencing was found to be:

T r/T  r/T?
Po=| r/T 2r/T? 3r/T® (19)
r/T? 3r/T® 6r/T*

where r is the variance of the measurement noise. Note that eqn. 19 corresponds to the
initial direction cosine state vectors in the spherical filters, or as part of the z,y, 2 state
vector in Cartesian filters.

3.3 Gating

Data validation (or gating) was incorporated into the filters. Gating was performed
on the (combined) z, y and z components of the state vector in the Cartesian filters
and for range and the three direction cosines in spherical filters. Ellipsoidal gating with
a probability of gating of Pg = 0.995 was used in each case. Track loss was declared
when three non-gated measurement events occurred consecutively. The process noise
used in gating for ImmSpher and Imm2CV was the same value used for tracking with
the manoeuvring model. Gating for ImmCVCA was performed using a constant velocity
model only and the process noise was the same as that used for gating in Imm2CV. All
single trackers (i.e. those described in Section 2) use the relevant values from their normal
tracking algorithm for gating.

Finally, it should be noted that the trackers continued tracking when track loss was
reported. The reason for this was that the interest lay not in simulating totally realistic
operational trackers, but in comparing track accuracy between coordinate systems. Thus
the data obtained from those Monte Carlo runs where track loss occurred was still included
in the ensemble of results used for error calculations.

4 Computer Simulations

The simulations employed MATLAB routines to generate APDR, sensor like data and
to process (and display) that data according to the aforementioned systems.
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4.1 Method of Comparison

The criteria for comparing tracking in the two coordinate systems were the following
track errors: positional, horizontal heading, vertical heading and range-rate. Monte Carlo
simulations were performed with a new set of APDR measurements for each run. For every
trial, 1000 runs were generated as input to the relevant tracking systems. The ensemble of
results was averaged at each time point. Positional error represents the average Euclidean
distance between the true and estimated target location. Heading and range-rate errors
on average are zero and so their root mean square (RMS) values were calculated. The
plots presented in this report display a comparison of those errors versus time.

For the case of a manoeuvring target trajectory (i.e. the IMM systems comparison),
the switching of model probabilities (i.e. p1 and po defined by eqn. 13) were also examined.

In terms of the simulated radar sensor data, the measurement noise standard devia-
tions used were based on typical values found in an APDR operating in either HPRF or
MPRF mode [11, Chps. 27,28]. The measurements were multivariate Gaussian, mutually
independent with mean of (o, Pm, Om, €m) equal to the corresponding trajectory kine-
matic state. The standard deviations adopted for HPRF were: o, = 1.5 km, 05, = 3.6
km/h, og = 2°, o = 2°. For MPRF the values used were: o, = 0.06 km, 0; = 18 km/h,
og = 2°, o = 2°. Note that the HPRF (versus MPRF) was characterised by larger range
error and smaller range-rate error. The update interval of the measurements was set to
3 seconds. For simplicity, a unity probability of detection and a static observer case was
assumed.

To give an indication of the overall benefits of using IMM for manoeuvre tracking, the
IMM results were compared with those obtained using a single model tracker of the same
type used in the IMM. In other words, the performance obtained from a single process noise
model was compared with the two interacting models, for both Cartesian and spherical
coordinate systems.

4.2 Simulated Trajectories

Three different trajectories were chosen for this investigation. The first was a constant
velocity trajectory, with the target moving towards the stationary radar platform (see
Figure 2). The starting range was approximately 82 km and the final range about 6
km from the radar platform. The target’s speed was approximately 640 km/h in the
North/East plane, with zero Down velocity, at a (constant) height of 3 km above the
radar. Simulations using this trajectory were run with both MPRF and HPRF modes
assumed operating.

‘The second trajectory consisted of two simple manoeuvres. The target, shown in
Figure 3 began at a range of approximately 81 km and headed with constant velocity of
about 1300 km/h towards the radar platform, until it reached a range of approximately
20 km. It then performed a 90° 2g turn followed by a short constant velocity heading,
then another 90° turn, but at 5g, so that it is headed away from the platform. It then
continued on a constant velocity heading until it was roughly 81 km away from the radar
again. The main purpose of this trajectory was to show the response of the filters to a
target changing from non-manoeuvring to manoeuvring motion, and vice versa.

11
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Figure 2: Top-down view of Trajectory 1
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Figure 8: Top-down view of Trajectory 2

Since the target moves away from the APDR platform during the second trajectory,
it was decided to simulate only MPRF mode measurements, as HPRF mode would be
“blind” in the tail chase and therefore not be used in such a scenario.

The third scenario is taken directly from the benchmark trajectories explored in [4].
The trajectory referred to as number 6 in [4] was chosen and Figure 4 shows the top down
view. A summary of this trajectory is as follows: constant velocity, 7¢ turn, constant
velocity, 6¢g turn and reduced speed/vertical dive then level flight again, 6g turn and full
throttle/constant heading, 7g turn, constant velocity. Again only the MPRF mode was
considered for this scenario.

4.3 Simulation Results

A brief discussion and summary of the comparison of errors is now presented. Unless
otherwise stated, the comments refer to that portion of time after which it was deemed
obvious that the filters had “settled”. :
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4.3.1 Non-manoeuvring Target Trajectory

The results for Trajectory 1 can be seen in Figures 5 and 6, and show errors for HPRF
and MPRF mode trials respectively. The process noise standard deviation used for all
three filters was o, = 0.4¢.

Trial 1(a) (HPRF, Figure 5)

For positional error, it is noted that CartesianRR is better than Cartesian and Spher-
ical, although the latter improves at very close range. Cartesian also gets worse at around
the same point in tracking. Both Cartesian trackers give virtually identical horizontal /
vertical heading errors. They clearly perform much better than Spherical, whose error
is up to about 5° worse. For range-rate error, we see that CartesianRR converges to a
steady-state value (generally equal to that of Spherical) fairly quickly. The performance
of Cartesian is quite poor—when it does reach a steady-state the level is an order of mag-
nitude higher than the other trackers. Spherical performs the best here, because its error
is constant (and very small). This result is understandable since Spherical directly tracks
the range and range-rate.

There was no track loss reported for any tracker in this trial.
Trial 1(b) (MPRF, Figure 6)

The positional errors of the two Cartesian trackers are virtually identical and are
slightly better than Spherical. The performances in horizontal/vertical heading errors are
generally identical to the HPRF case (Trial 1(a)), that is, Cartesian trackers are much
more accurate than spherical. Results for range-rate error are markedly different however.
CartesianRR settles to a value slightly lower than Spherical, which is again fairly constant.
However, both are at levels around 10 km/h higher than for HPRF. The performance of
Cartesian is similar to CartesianRR but the error for Cartesian grows larger as range
decreases. Again, these results are expected because MPRF mode has much higher range-
rate errors than HPRF mode.

There was either zero or negligible track loss reported for the trackers in this trial.

13
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Figure 6: Trial 1(b) (MPRF) tracking errors: (a) positional; (b) horizontal heading; (c)
vertical heading; (d) range-rate
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4.3.2 Manoeuvring Target Trajectories

For the last two trajectories, the three IMM trackers were compared, as well as Carte-
sianRR and Spherical. The process noise levels (i.e. o) chosen for the various trackers

were as follows:

Table 1: Process Noise Levels

TRACKER | Process Noise M1 | Process Noise M2
ImmSpher 0.1g 2.5g
Imm2CV 0.1¢ 2.5¢
ImmCVCA 0.1g 1.5¢

CartesianRR 1.5¢
Spherical 1.5¢

Trial 2 (MPRF) - Trajectory 2

The model probabilities versus time, for each of the three IMM trackers can be seen in
Figure 7. The initial switching at the start of each plot is due to the fact that the initial
model probabilities were deliberately set to 0.1 and 0.9 for M1 and M2 respectively. The
reasons for this were twofold. Firstly, it is safer to assume that the target may actually
be manoeuvring when the tracking begins. Secondly, by using this assumption, a larger
filter bandwidth (due to the higher process noise standard deviation of M2) is essentially
used to begin with, which usually helps to reduce settling errors of the filters.

The bottom plot in Figure 7 shows the magnitude of acceleration versus time, for the
trajectory under consideration. The vertical lines indicate approximate start and stop
times of manoeuvres (i.e. non-zero accelerations). The values given are an approximation
only, since actual acceleration was not generated in the state vector for this trajectory. In
terms of the switching performance, it is clear that both Cartesian trackers switch very
sharply and reliably detect the first manoeuvre (i.e. the 2g turn). However, it would seem
that due to the time it takes to switch back to M1, the trackers do not accurately detect
that the target has stopped turning before the next manoeuvre begins.

The error versus time plots for Trial 2 are displayed as follows: Figure 8 shows a
comparison of the three IMM trackers, Figure 9 shows a comparison of Imm2CV with
CartesianRR and Figure 10 shows a comparison of ImmSpher with Spherical.

As a general comment (for both Trial 2 and Trial 3), although manoeuvring and non-
manoeuvring sections of the tracking errors are referred to, they do not always correspond
to the relevant sections of the target trajectory. The reason for this is that the IMM filters
generally have a lag in switching to the manoeuvring model (M2) and also a large settling

time in returning to M1.

In comparing the three IMM trackers, the following is noted. All three trackers have
very similar positional errors during the non-manoeuvring periods, with ImmCVCA doing
slightly better than the other two. During the manoeuvring periods, ImmSpher performs
best, followed by ImmCVCA, then Imm2CV. The last tracker’s performance on the second
turn is particularly bad. A similar general trend is seen for horizontal heading error.
During non-manoeuvring periods, vertical heading errors for ImmCVCA and Imm2CV
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Figure 7: Trial 2 model probabilities

are virtually identical, and are generally a little better than ImmSpher. Overall Imm2CV
performs best during the manoeuvring sections followed by ImmCVCA, then ImmSpher.
For range-rate error, InmCVCA and Imm2CYV are very similar during non-manoeuvring
periods and clearly do better than ImmSpher. However, the latter performs best during
the manoeuvring sections, with ImmCVCA doing worst.

By examining the trends in the plots of Figure 9, it can be seen that in general,
Imm2CV has better error performance during non-manoeuvring periods. There is not
much useful gain to be had during the manoeuvres because the errors for Imm2CV are
still very high, despite being (usually) lower than CartesianRR. It must stressed however,
that CartesianRR actually lost track almost half of the time for Trial 2. So it could be
argued that to track such a trajectory realistically, a single model tracker with moderate
process noise (1.5g here for CartesianRR) is inappropriate.

A similar situation presents itself in the plots of Figure 10, where ImmSpher and
Spherical are compared, although both trackers had acceptable track loss in this case.
Only for vertical heading error was Spherical (slightly) better than ImmSpher.
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Figure 8: Trial 2 tracking errors (IMM filters): (a) positional; (b) horizontal heading; (c)
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Table 2: Track Loss Statistics for Trial 2
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TRACKER | Track Loss
ImmSpher 0%
Imm2CV 2.9%
ImmCVCA 0%
CartesianRR 48.4%
Spherical 0%

Trial 3 (MPRF) - Trajectory 3

Figure 11 shows the model probabilities versus time. The initial probabilities were set
to the same values as for Trial 2.

The bottom plot in Figure 11 shows the magnitude of acceleration versus time, for the
trajectory under consideration. The values given are taken directly from the generated
data for the benchmark trajectory. The plots show that switching was in general not as
sharp and clean as that seen for Trial 2. This was probably due to the fact that there
were a larger number of fairly closely spaced accelerations (manoeuvres) present in this
trajectory, and therefore the trackers could not ‘decide’ easily which state the target was
in. The best switching performance is arguably obtained by ImmCVCA since it detects
the four main manoeuvres very well and switches back to M1 the quickest after the last
manoeuvre.

The error versus time plots for Trial 3 are displayed as follows: Figure 12 shows a
comparison of the three IMM trackers, Figure 13 shows a comparison of Imm2CV with
CartesianRR and Figure 14 shows a comparison of ImmSpher with Spherical.

The comparison of the IMM trackers in Figure 12 highlights some interesting results.
Positional errors are generally quite high compared to those found in Trial 2. ImmSpher
performs better on the first two manoeuvres. The two Cartesian trackers are characterised
by very large errors after a manoeuvre is performed. Horizontal heading errors are very
large for all trackers during manoeuvring periods. ImmSpher again performs best on the
first two manoeuvres but is the worst on the last manoeuvre. For vertical heading, errors
are quite large, and there is no clear winner in terms of performance of Imm2CV versus
ImmSpher. Finally, for range-rate error, ImmSpher does best, followed by Imm2CV and
ImmCVCA.

Overall there are no long “quiet” periods in terms of the trackers settling to small error
values. This is because there are too many manoeuvres too often for the filters to settle
(this correlates with the observed switching of models, discussed earlier).

The main conclusion to draw from the plots of Figures 13 and 14 is that it appears
there is not much benefit in using IMM over the single Cartesian or spherical tracker in
this scenario, since for this trajectory the non-manoeuvring sections are not long enough
to bring out the benefit of the low process noise in M1.

Examining the data in Table 3, we see that Imm2CV and CartesianRR are the only
trackers where significant track loss occurs for Trial 3.
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Figure 11: Trial 8 model probabilities

4.4 Computational Aspects

The data presented in Table 4 gives a very rough estimate of the relative amount of
computation needed for each tracking system, with Spherical used as a reference due to
its requiring the least amount of computation. Note that this is a guide only, and proper
methodical comparisons were not undertaken. However, the general trends should be

obvious.

It is also necessary to mention that the tracking was performed in units of kilometres
(as well as seconds and radians). Distances for the trajectory data were generated or
obtained (in the case of Trial 3) in metres. However, tracking in this unit amplified certain
undesirable occurrences for positional error in spherical coordinates. Investigations suggest
that although the phenomenon is influenced by other factors, the choice of distance units
has an unexpected and unexplainable effect. It is believed therefore that the effect may
be attributable to numerical instability within MATLAB.




DSTO-TR~-0926

— ImmCVCA i | — ImmCvCA
ak- - - Imm2CV S vl = Imm2CV 4
-~~~ ImmSpher @ | == ImmSpher
z
3‘5 b
= 5
L
~ 3p
5 | 2
25 B
w ]
© I
©
2 —_
§ g
D15 2
o <]
1 I
(92}
=
05F e B o
G L i 1 o Il 1
0 50 100 150 0 50 . 100
time (sec) time (sec)
(a) (b)
50 T T T 60 v T 1
\'\ — ImmCVCA —— ImmCVCA
BBy - - Imm2cv | - —- Imm2CV
== ImmSpher 50k -=-— ImmSpher

[~ [\] »
o 3] (=]
H
[=]
T

RMS Range-Rate Error (km/h)
w
o

RMS Vertical Ht-::sxding Error (deg)
(42

20
20}
15 N
10f-
10r
5
% % 50 ] 100 150
time (sec) time (sec)
(c) (d)

Figure 12: Trial 8 tracking errors (IMM filters): (a) positional; (b) horizontal heading;
(c) vertical heading; (d) range-rate
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ing; (c) vertical heading; (d) range-rate
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Figure 14: Trial 8 tracking errors (spherical filters): (a) positional; (b) horizontal heading;
(c) vertical heading; (d) range-rate
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Table 3: Track Loss Statistics for Trial 3

TRACKER | Track Loss
ImmSpher 0%
Imm2CV 7.3%
ImmCVCA 0.1%
CartesianRR 7.6%
Spherical 0%

Table 4: Relative Computational Requirements

TRACKER | Relative Computations Needed
Spherical 1
Cartesian 2
CartesianRR 3
ImmSpher 7
Imm2CV 8
ImmCVCA 11

5 Conclusions

For constant velocity target tracking, it appears that there is useful error reduction to
be had by using Cartesian coordinates over spherical. It is noteworthy that the inclusion
of range-rate into the Cartesian tracker is of significant benefit only for the HPRF mode.

The general trend for manoeuvring trajectory motion is that spherical coordinate fil-
ters achieve higher tracking accuracy during manoeuvres (or at least when the tracker is
responding to them). During manoeuvres, the spherical filters also appear to be more
robust against track loss. For tracking in Cartesian coordinates, tracks are occasionally
lost if the manoeuvring model is too simplistic (such as the constant velocity model with
large process noise). The constant acceleration model for a manoeuvring target in Carte-
sian coordinates, however, performs reasonably well during manoeuvres. Other dynamic
models in the Cartesian IMM algorithm have not been investigated in the report, though
the literature suggests that some improvements could be expected using constant jerk [10]
or constant speed turning models [5] for tracking highly manoeuvrable targets.

Overall tracking in spherical coordinates with an airborne pulse Doppler radar seems
to be a reasonable choice - even the most severe manoeuvres are tracked with no track loss
and with the smallest tracking errors, while the computational load of the spherical filters
is minimal. The main disadvantage of spherical coordinates is somewhat larger tracking
errors for non-manoeuvring segments of a trajectory.
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